Refine Your Search

Topic

Author

Search Results

Technical Paper

Pressure Ratio Influence on Exhaust Valve Flow Coefficients

2017-03-28
2017-01-0530
In one dimensional engine simulation software, flow losses over complex geometries such as valves and ports are described using flow coefficients. It is generally assumed that the pressure ratio over the valve has a negligible influence on the flow coefficient. However during the exhaust valve opening the pressure difference between cylinder and port is large which questions the accuracy of this assumption. In this work the influence of pressure ratio on the exhaust valve flow coefficient has been investigated experimentally in a steady-flow test bench. Two cylinder heads, designated A and B, from a Heavy-Duty engine with different valve shapes and valve seat angles have been investigated. The tests were performed with both exhaust valves open and with only one of the two exhaust valves open. The pressure ratio over the exhaust port was varied from 1.1:1 to 5:1. For case A1 with a single exhaust valve open, the flow coefficient decreased significantly with pressure ratio.
Technical Paper

Pressure Amplitude Influence on Pulsating Exhaust Flow Energy Utilization

2018-04-03
2018-01-0972
A turbocharged Diesel engine for heavy-duty on-road vehicle applications employs a compact exhaust manifold to satisfy transient torque and packaging requirements. The small exhaust manifold volume increases the unsteadiness of the flow to the turbine. The turbine therefore operates over a wider flow range, which is not optimal as radial turbines have narrow peak efficiency zone. This lower efficiency is compensated to some extent by the higher energy content of the unsteady exhaust flow compared to steady flow conditions. This paper experimentally investigates the relationship between exhaust energy utilization and available energy at the turbine inlet at different degrees of unsteady flow. A special exhaust manifold has been constructed which enables the internal volume of the manifold to be increased. The larger volume reduces the exhaust pulse amplitude and brings the operating condition for the turbine closer to steady-flow.
Journal Article

Preparation and Characterization of a Stable Test Fuel Comparable to Aged Biodiesel for Use in Accelerated Corrosion Studies

2014-10-13
2014-01-2772
Biodiesel is chemically unstable and sensitive to oxidation. Aging of biodiesel results in the formation of degradation products, such as short chain fatty acids (SCFA) and water. These products may cause corrosion of metals in fuel systems. When performing corrosion tests, biodiesel continuously degrades during the test, resulting in an uncontrolled test system. In order to obtain a stable corrosion testing system, a test fuel was developed using a saturated FAME (methyl myristate), which was doped with RME degradation products at levels typically seen in field tests. The test fuel was compared to RME with regards to structure, SCFA and water content before and after aging tests. In addition, an accelerated corrosion study of copper was performed in both the test fuel and in RME. The copper specimens were analyzed before and after test using light optical microscope and weight measurements. The Cu content in the test fuel and RME was also analyzed.
Technical Paper

Particle Emission Measurements in a SI CNG Engine Using Oils with Controlled Ash Content

2019-01-15
2019-01-0053
Clean combustion is one of the inherent benefits of using a high methane content fuel, natural gas or biogas. A single carbon atom in the fuel molecule results, to a large extent, in particle-free combustion. This is due to the high energy required for binding multiple carbon atoms together during the combustion process, required to form soot particles. When scaling up this process and applying it in the internal combustion engine, the resulting emissions from the engine have not been observed to be as particle free as the theory on methane combustion indicates. These particles stem from the combustion of engine oil and its ash content. One common practice has been to lower the ash content to regulate the particulate emissions, as was done for diesel engines. For a gas engine, this approach has been difficult to apply, as the piston and valvetrain lubrication becomes insufficient.
Technical Paper

Optical Studies in a DI Diesel Engine

1999-10-25
1999-01-3650
Fuel injection and combustion was studied with direct photography in a single cylinder DI diesel engine. Optical access was accomplished by using an endoscope-based measurement system. In the optical measurements the influence of several parameters were studied: start of injection, inlet air temperature and pressure, injected fuel amount (constant air mass), load level (varying air and fuel mass) and nozzle hole diameter. Liquid fuel spray penetration, flame lift-off and flame length were measured. The maximum spray penetration was 23 - 25 mm. As diffusion combustion started, the spray length decreased to about 15 mm. The flame lift-off was located 4 - 6 mm behind the liquid fuel spray tip. Using the two-color method the spatial temperature distribution in flames was calculated.
Technical Paper

Modelling Diesel Engine Combustion and NOx Formation for Model Based Control and Simulation of Engine and Exhaust Aftertreatment Systems

2006-04-03
2006-01-0687
Emissions standards are becoming increasingly harder to reach without the use of exhaust aftertreatment systems such as Selective Catalytic Reduction and particulate filters. In order to make efficient use of these systems it is important to have accurate models of engine-out emissions. Such models are also useful for optimizing and controlling next-generation engines without aftertreatment using for example exhaust gas recirculation (EGR). Engines are getting more advanced using systems such as common rail fuel injection, variable geometry turbochargers (VGT) and EGR. With these new technologies and active control of the injection timing, more sophisticated models than simple stationary emission maps must be used to get adequate results. This paper is focused on the calculation of engine-out NOx and engine parameters such as cylinder pressure, temperature and gas flows.
Technical Paper

Modeling the Intake CO2-level during Load Transients on a 1-Cylinder Heavy Duty DI Diesel Engine

2009-09-13
2009-24-0039
For diesel engines the major exhaust problem is particulate matter and NOx emissions. To reduce NOx, exhaust gas recirculation (EGR) is often used. The behavior of the EGR-level will therefore influence the emissions and it is therefore valuable to keep track of the EGR-level. Especially during transients it is difficult to predict how the EGR-level varies. In this paper the CO2-level in the intake is modeled on a 1-cylinder diesel engine to predict the in cylinder behavior during transients. The model is based on simple thermodynamics together with the ideal gas law. Using this, the model is validated by experimental data during transients and the correlation between model and experiment is shown to be strong. Furthermore, the total tank volume is decreased to achieve a faster mixing with the intention of simulating the behavior of the CO2-level in a full-size engine which has a higher gas flow.
Technical Paper

Model Predictive Control of a Combined EGR/SCR HD Diesel Engine

2010-04-12
2010-01-1175
Achieving upcoming HD emissions legislation, Euro VI/EPA 10, is a challenge for all engine manufacturers. A likely solution to meet the NOx limit is to use a combination of EGR and SCR. Combining these two technologies poses new challenges and possibilities when it comes to optimization and calibration. Using a complete system approach, i.e., considering the engine and the aftertreatment system as a single unit, is important in order to achieve good performance. Optimizing the complete system is a tedious task; first there are a large number of variables which affect both emissions and fuel consumption (injection timing, EGR rate, urea dosing, injection pressure, pilot/post injections, for example). Secondly, the chemical reactions in the SCR catalyst are substantially slower than the dynamics of the diesel engine and the rest of the system, making the optimization problem time dependent.
Technical Paper

Mechanism for Internal Injector Deposits Formation in Heavy-duty Engines using Drop-in Fuels

2023-09-29
2023-32-0053
Heavy-duty transportation is one of the sectors that contributes to greenhouse gas emissions. One way to reduce CO2 emissions is to use drop-in fuels. However, when drop-in fuels are used, i.e., higher blends of alternative fuels are added to conventional fuels, solubility problems and precipitation in the fuel can occur. As a result, insolubles in the fuel can clog the fuel filters and interfere with the proper functioning of the injectors. This adversely affects engine performance and increases fuel consumption. These problems are expected to increase with the development of more advanced fuel systems to meet upcoming environmental regulations. This work investigates the composition of the deposits formed inside the injectors of the heavy-duty diesel engine and discusses their formation mechanism. Injectors with internal deposits were collected from field trucks throughout Europe. Similar content, location and structure were found for all the deposits in the studied injectors.
Technical Paper

Knock Sensor Based Virtual Cylinder Pressure Sensor

2019-01-15
2019-01-0040
Typically the combustion in a direct injected compression ignited internal combustion engine is open-loop controlled. The introduction of a cylinder pressure sensor opens up the possibility of a virtual combustion sensor which could enable closed-loop combustion control and thus the potential to counteract effects such as engine part to part variation, component ageing and fuel quality diversity. Closed-loop combustion control requires precise, robust and preferably cheap sensors. This paper presents a virtual cylinder pressure sensor based on the signal from the inexpensive but well proven knock sensor. The method used to convert the knock sensor signal into a pressure estimate included the stages: Phase correcting the raw signal, Filtering the raw signal, Scaling the signal to known thermodynamic laws and provided engine sensors signals and Reconstructing parts of the signal with other known models and assumptions.
Technical Paper

Knock Sensor Based Virtual Combustion Sensor Signal Bias Sensitivity

2018-04-03
2018-01-1154
The combustion in a direct injected internal combustion engine is normally open-loop controlled. The introduction of cylinder pressure sensors enables a virtual combustion sensor which in turn enables closed-loop combustion control, and the possibility to counteract effects such as engine part-to-part variation, component ageing and fuel quality diversity. Closed-loop combustion control requires precise, robust and preferably cheap sensors. This paper presents an investigation of the robustness and the limitation of a knock sensor based virtual combustion sensor. This virtual combustion sensor utilize the common heat release analysis using a knock sensor based virtual cylinder pressure signal. Major virtual sensor error sources in a heavy-duty engine were identified as: the specific heat ratio model, the boost pressure and the crank angle phasing. The virtual sensor errors were quantified in relation to both the measured cylinder pressure and the total virtual sensor error.
Technical Paper

In-Cylinder Flow Pattern Evaluated with Combustion Image Velocimetry, CIV, and CFD Calculations during Combustion and Post-Oxidation in a HD Diesel Engine

2013-09-08
2013-24-0064
In-cylinder flow pattern was evaluated during diesel combustion and post-oxidation in a heavy duty optical engine and compared with CFD calculations. In this work the recently developed optical method combustion image velocimetry (CIV) is evaluated. It was used for extracting the flow pattern during combustion and post-oxidation by tracing the glowing soot clouds in the cylinder. The results were compared with CFD sector simulation on the same heavy duty engine geometry. Load was 10 bar IMEP and injection pressure was varied in two steps together with two different swirl levels. The same variations were done in both the optical engine and in the CFD simulations. The main results in this work show that the CIV method and the CFD results catch the same flow pattern trends during combustion and post-oxidation. Evaluation of the CIV technique has been done on large scale swirl vortices and compared with the CFD results at different distances from the piston bowl surface.
Technical Paper

Heavy-Duty Engine Intake Manifold Pressure Virtual Sensor

2019-04-02
2019-01-1170
Increasing demands for more efficient engines and stricter legislations on exhaust emissions require more accurate control of the engine operating parameters. Engine control is based on sensors monitoring the condition of the engine. Numerous sensors, in a complex control context, increase the complexity, the fragility and the cost of the system. An alternative to physical sensors are virtual sensors, observers used to monitor parameters of the engine thus reducing both the fragility and the production cost but with a slight increase of the complexity. In the current paper a virtual intake manifold cylinder port pressure sensor is presented. The virtual sensor is based on a compressible flow model and on the pressure signal of the intake manifold pressure sensor. It uses the linearized pressure coefficient approach to keep vital performance behaviors while still conserving calibration effort and embedded system memory.
Technical Paper

Heat Release Based Virtual Combustion Sensor Signal Bias Sensitivity

2017-03-28
2017-01-0789
Typically, the combustion in an internal combustion engine is open-loop controlled. The introduction of a cylinder pressure sensor opens the possibility to introduce a virtual combustion sensor. This virtual sensor is a possible enabler for closed-loop combustion control and thus the possibility to counteract the effects of engine part to part variation, component ageing and fuel quality diversity. The extent to which these effects can be counteracted is determined by the detection limits of the virtual combustion sensor. To determine the limitation of the virtual combustion sensor, a virtual combustion sensor system was implemented based on a one-zone heat-release analysis, including the signal processing of the pressure sensor input. The typical error sources in a heavy-duty engine were identified and quantified. The virtual combustion sensor system was presented with flawed signals and the sensor’s sensitivities to the errors were quantified.
Journal Article

Heat Loss Analysis of a Steel Piston and a YSZ Coated Piston in a Heavy-Duty Diesel Engine Using Phosphor Thermometry Measurements

2017-03-28
2017-01-1046
Diesel engine manufacturers strive towards further efficiency improvements. Thus, reducing in-cylinder heat losses is becoming increasingly important. Understanding how location, thermal insulation, and engine operating conditions affect the heat transfer to the combustion chamber walls is fundamental for the future reduction of in-cylinder heat losses. This study investigates the effect of a 1mm-thick plasma-sprayed yttria-stabilized zirconia (YSZ) coating on a piston. Such a coated piston and a similar steel piston are compared to each other based on experimental data for the heat release, the heat transfer rate to the oil in the piston cooling gallery, the local instantaneous surface temperature, and the local instantaneous surface heat flux. The surface temperature was measured for different crank angle positions using phosphor thermometry.
Journal Article

Factors Influencing the Formation of Soft Particles in Biodiesel

2020-09-27
2020-24-0006
In order to mitigate the effect of fossil fuels on global warming, biodiesel is used as drop in fuel. However, in the mixture of biodiesel and diesel, soft particles may form. These soft particles are organic compounds, which can originate from the production and degradation of biodiesel. Further when fuel is mixed with unwanted contaminants such as engine oil the amount soft particles can increase. The presence of these particles can cause malfunction in the fuel system of the engine, such as nozzle fouling, internal diesel injector deposits (IDID) or fuel filter plugging. Soft particles and the mechanism of their formation is curtail to understand in order to study and prevent their effects on the fuel system. This paper focuses on one type of soft particles, which are metal soaps. More precisely on the role of the short chain fatty acids (SCFA) during their formation. In order to do so, aged and unaged B10 was studied.
Technical Paper

FPGA Implementation of In-Cycle Closed-Loop Combustion Control Methods

2021-09-05
2021-24-0024
This paper investigates the FPGA resources for the implementation of in-cycle closed-loop combustion control algorithms. Closed-loop combustion control obtains feedback from fast in-cylinder pressure measurements for accurate and reliable information about the combustion progress, synchronized with the flywheel encoder. In-cycle combustion control requires accurate and fast computations for their real-time execution. A compromise between accuracy and computation complexity must be selected for an effective combustion control. The requirements on the signal processing (evaluation rate and digital resolution) are investigated. A common practice for the combustion supervision is to monitor the heat release rate. For its calculation, different methods for the computation of the cylinder volume and heat capacity ratio are compared. Combustion feedback requires of virtual sensors for the misfire detection, burnt fuel mass and pressure prediction.
Technical Paper

Experimental Determination of the Heat Transfer Coefficient in Piston Cooling Galleries

2018-09-10
2018-01-1776
Piston cooling galleries are critical for the pistons’ capability to handle increasing power density while maintaining the same level of durability. However, piston cooling also accounts for a considerable amount of heat rejection and parasitic losses. Knowing the distribution of the heat transfer coefficient (HTC) inside the cooling gallery could enable new designs which ensure effective cooling of areas decisive for durability while minimizing parasitic losses and overall heat rejection. In this study, an inverse heat transfer method is presented to determine the spatial HTC distribution inside the cooling gallery based on surface temperature measurements with an infrared (IR) camera. The method utilizes a piston specially machined so it only has a thin sheet of material of a known thickness left between the cooling gallery and the piston bowl. The piston - initially at room temperature - is heated up with warm oil injected into the cooling gallery.
Technical Paper

Evaluation of Cylinder State Estimator using Fuel Evaporation Assessment in a PFI Methanol HD SI Engine

2022-08-30
2022-01-1065
Modern spark-ignited (SI) engines offer excellent emission reduction when operated with a stoichiometric mixture and a three-way catalytic converter. A challenge with stoichiometric compared to diluted operation is the knock propensity due to the high reactivity of the mixture. This limits the compression ratio, thus reducing engine efficiency and increasing exhaust temperature. The current work evaluated a model of conditions at inlet valve closing (IVC) and top dead center (TDC) for steady state operation. The IVC temperature model is achieved by a cycle-to-cycle resolved residual gas fraction estimator. Due to the potential charge cooling effect from methanol, a method was proposed to determine the fraction of fuel sourced from a wall film. Determining the level of charge cooling is important as it heavily impacts the IVC and TDC temperatures.
Technical Paper

Error Propagation in Heavy Duty Gas Flow Measurement

2013-10-14
2013-01-2498
The amount of emitted pollutants from an internal combustion engine is regulated by emission legislation. Commonly regulated pollutants for the diesel engine are NOx and PM. Exhaust gas recirculation (EGR) is one efficient way of controlling the NOx emissions, and to control PM emissions an accurate lambda control is used. Both EGR- and lambda control requires good knowledge of the gas flows in the engine. The gas flows of interest are inlet air, EGR, total gas flow through the engine and total amount of exhaust gas. There are several possible concepts to measure and/or model these gas flows, all with their pros and cons. Flow and concentration based measurement concepts for determining the gas flows in a heavy duty diesel engine with EGR are investigated. The flow based concepts measures the amount of gas directly with a flow meter such as a hot-film air meter, ultrasonic flow meter or an orifice plate.
X